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ABSTRACT

This paper describes a multi-disciplinary damage
detection methodology that can aid in detecting and
diagnosing a damage in a given structural system, not
limited to the example of a rotating gear presented here.
Damage detection is performed on the gear stress data
corresponding to the steady state conditions. The
normal and damage data are generated by a finite-
difference solution of elastodynamic equations of
velocity and stress in generalized coordinates1. The
elastodynamic solution provides a knowledge of the
stress distribution over the gear such as locations of
stress extrema, which in turn can lead to an optimal
placement of appropriate sensors over the gear to detect
a potential damage. The damage detection is performed
by a multi-function optimization that incorporates
Tikhonov  kernel regularization reinforced by an added
Laplacian regularization term as used in semi-supervised
machine learning.  Damage is mimicked by  reducing the
rigidity of one of the gear teeth. Damage detection
models are trained on a subset of the normal data and are
then tested on the damage solution. The precision with
which the damaged tooth and the extent of the damage
are identified is very encouraging. The present
methodology  promises to lead to a significant damage
detection, diagnosis and prognosis technology for
structural health monitoring.

INTRODUCTION

This paper discusses how  machine learning methods
(Refs. 1,2) in conjunction with physics-based modeling
and simulation (Refs. 3,4) can aid in determining optimal
configuration for a sensor layout on a given structure for
structural health monitoring as well as in structural
damage detection.  In conventional machine learning
methodologies used in data mining to predict trends,
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e.g., in global climate change, training sets are often
derived from some random distribution, based on which
learning models are constructed. In engineering
systems, where one needs to be more precise than
predicting trends, deterministic domain knowledge of
the particular engineering system is necessary to
establish a meaningful training set for construction of
such a learning model. Using this domain knowledge, a
Tikhonov kernel based regularization technique  along
with an added Laplacian regularization term as used in
semi-supervised learning (Ref. 5) can then detect and
diagnose a potential damage anywhere on the structure
where sensors have been placed. This is the subject of
the present study.

The multi-function regularization technique  is used to
construct the machine learning model by training it on a
subset of the normal data and then testing it on the
sensor data to predict a potential damage anywhere in
the domain where sensors are placed. The training set is
chosen especially based on the regions of the domain
where the computational models predict maximum
stresses.  Learning models are constructed by training
them respectively on radial, tangential and shear stress
fields. In all the three cases, predictions are shown to be
in excellent agreement with the true solution where true
solution is the finite difference solution of the
elastodynamic equations governing the radial, tangential
and shear stresses. Once the learning models are
trained, each model is then tested on the corresponding
damage stress data, and the distribution of the
difference between the normal and the predicted data is
then calculated all over the gear. This error distribution
thus detects and quantifies the degree of damage  on
the damaged tooth.

A  test problem is considered where a steel gear is
steadily rotating  at 6,000 rpm  and is thus subjected to
steady state radial, tangential and shear stress fields.
Two cases are studied. In the first one, homogeneous
material properties are considered all over the domain



(gear grid). In the second one, rigidity of one of the teeth
is decreased in a certain fashion to reflect compromised
stiffness due to, say, manufacturing variations, exposure
to extreme thermal  loading or  an incipient crack, among
others.

RESULTS

The first case considered was that of all the nineteen
gear teeth having uniform material properties as those of
industrial steel. The gear grid is obtained using elliptic
grid generation methodology (Ref. 2)2 and is shown
below.

             Fig. 1    A 19-tooth gear cross-section showing
                                 damaged tooth #1

 The gear is impulsively rotated at 6,000 rpm. The
elastodynamic partial differential equations, three for
three velocity components and six for the symmetric
stress tensor, are integrated in time (Refs. 3 and 4). The
integration is carried out into the middle of the fourth
rotation of the gear, when the vibrations have
substantially attenuated and the equilibrium stress state
is approximately attained. This computed  solution,
referred to as the true solution, is obtained for radial,
tangential and shear stresses all over the gear.  With this
computed solution, the locations of the radial and
tangential stress extrema are known, as shown in Fig.
2(a-b). We thus train our machine learning optimization
algorithm on the stress and position data around these
locations as well as define an optimal sensor layout over
the gear for damage detection.
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                   (a)

               (b)

               Fig. 2    True stress distribution; (a)  radial  stress
                                 (b)  tangential  stress

Using this strategy, we train the algorithm on about 10%
of these data. A prediction of normal radial stress all over
the gear is shown in Fig. 3.(a). Comparing Figs. 2(a) and
3(a), it is shown that the prediction follows the true
solution closely.  The rms error over the entire grid is
about 5% . Fig. 3(b) shows the predicted   normal
tangential stress distribution. Again, comparison of Fig.
3(b) with Fig. 2(b) shows that the predicted and true
tangential   stresses  are in close agreement. Extending
the learning models thus constructed to test damage
data, with one gear  tooth made less rigid than the rest of
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the teeth, predictions of radial stress are made by the
thus learned model. These predictions are shown in Fig.
4(a) as the difference between the true normal radial
stress and the just predicted damage radial stress
distributions.  Inspection of Fig. 4(a) clearly shows a
discrepancy in the radial stress distribution in a given
region, and this local region turns out to be
correspondent to be the damaged tooth. Same
observation is made on inspection of Fig. 4(b) with
respect to the tangential stress distribution.

                 (a)

               (b)

                Fig. 3   Normal radial stress distribution over the
                              gear ;  (a)  radial stress  (b)  tangential stress

Figs. 5(a-b)   show the line plots of the error in radial and
tangential stress distributions, respectively. The abscissa
denotes the grid point index; the first 420 grid points
represent the first tooth; the last 420 grid points

represent the nineteenth tooth.  The damage is clearly
predicted around the first and the 19th teeth.

Finally, Fig. 6  shows the shear stress error distribution
identifying the damaged tooth.

          Fig. 4   Normalized error in stress distribution over
                          the gear; (a) radial stress   (b)  tangential
                          stress

This study thus establishes that for structural health
monitoring, physics-based modeling and simulation  is
required to provide nominal solutions, both normal and
damage, as reference solutions, which can then be used
to train machine learning algorithms to subsequently  test
the incoming sensor data over a distributed network of
sensors  to detect damage. The  first-principles modeling
and simulation can also be used to guide an optimal
placement of sensors over a given structural system..



                (a)

                (b)

        Fig. 5    Normalized error in stresses isolating the
                       damaged tooth; (a) radial stress  (b)
                        tangential stress

            Fig. 6   Normalized error in shear stress distribution
                           over the  gear;

CONCLUSION

The multi-function optimization methodology developed
in this study can be used to detect damage in any given
structure for structural health monitoring. The
methodology also holds promise for  applicability in
detecting an evolving damage such as crack
propagation. The multi-disciplinary approach adopted
here will first provide a large space of reference solutions
or signatures corresponding to a variety of damage
solutions, both stationary and dynamic, through the
physics-based deterministic solutions. Then, these
reference solutions will be used by the multi-function
optimization technique used here to construct machine
learning models to detect damage. This methodology
can be used on a variety of platforms such as in space,
aerospace and automotive structural applications, among
others.  
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